Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of TRPM7 blocks MRTF/SRF-dependent transcriptional and tumorigenic activity

Abstract

Myocardin-related transcription factors A and B (MRTFs) are coactivators of Serum Response Factor (SRF) that mediates the expression of genes involved in cell proliferation, migration and differentiation. There is mounting evidence that MRTFs and SRF represent promising targets for hepatocellular carcinoma (HCC) growth. Since MRTF-A nuclear localization is a prerequisite for its transcriptional activity and oncogenic properties, we searched for pharmacologically active compounds able to redistribute MRTF-A to the cytoplasm. We identified NS8593, a negative gating modulator of the transient receptor potential cation channel TRPM7, as a novel inhibitor of MRTF-A nuclear localization and transcriptional activity. Using a pharmacological approach and targeted genome editing, we investigated the functional contribution of TRPM7, a unique ion channel containing a serine-threonine kinase domain, to MRTF transcriptional and tumorigenic activity. We found that TRPM7 function regulates RhoA activity and subsequently actin polymerization, MRTF-A-Filamin A complex formation and MRTF-A/SRF target gene expression. Mechanistically, TRPM7 signaling relies on TRPM7 channel-mediated Mg2+ influx and phosphorylation of RhoA by TRPM7 kinase. Pharmacological blockade of TRPM7 results in oncogene-induced senescence of hepatocellular carcinoma (HCC) cells in vitro and in vivo in HCC xenografts. Hence, inhibition of the TRPM7/MRTF axis emerges as a promising strategy to curb HCC growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Redistribution of MRTF-A to the cytoplasm and inhibition of SRF target gene expression upon TRPM7 blockade.
Fig. 2: Inhibition of MRTF/SRF target gene expression upon TRPM7 blockade.
Fig. 3: Inactivation of the RhoA/actin signaling axis upon TRPM7 blockade.
Fig. 4: Functional coupling of RhoA and TRPM7 via its kinase domain.
Fig. 5: Requirement of TRPM7 kinase activity for MRTF transcriptional activity.
Fig. 6: TRPM7 blockade results in oncogene-induced senescence.
Fig. 7: Antitumor effects of TRPM7 blockade in vivo.
Fig. 8: Model for MRTF-A regulation upon TRPM7 blockade.

Similar content being viewed by others

References

  1. Olson EN, Nordheim A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol cell Biol. 2010;11:353–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Winkles JA. Serum- and polypeptide growth factor-inducible gene expression in mouse fibroblasts. Prog Nucleic Acid Res Mol Biol. 1998;58:41–78.

    CAS  PubMed  Google Scholar 

  3. Miralles F, Posern G, Zaromytidou AI, Treisman R. Actin dynamics control srf activity by regulation of its coactivator mal. Cell. 2003;113:329–42.

    CAS  PubMed  Google Scholar 

  4. Holmes KC, Popp D, Gebhard W, Kabsch W. Atomic model of the actin filament. Nature. 1990;347:44–49.

    CAS  PubMed  Google Scholar 

  5. Baarlink C, Wang H, Grosse R. Nuclear actin network assembly by formins regulates the srf coactivator mal. Science. 2013;340:864–7.

    CAS  PubMed  Google Scholar 

  6. Kircher P, Hermanns C, Nossek M, Drexler MK, Grosse R, Fischer M, et al. Filamin a interacts with the coactivator mkl1 to promote the activity of the transcription factor srf and cell migration. Sci Signal. 2015;8:ra112.

    PubMed  Google Scholar 

  7. Muehlich S, Hampl V, Khalid S, Singer S, Frank N, Breuhahn K, et al. The transcriptional coactivators megakaryoblastic leukemia 1/2 mediate the effects of loss of the tumor suppressor deleted in liver cancer 1. Oncogene. 2012;31:3913–23.

    CAS  PubMed  Google Scholar 

  8. Ohrnberger S, Thavamani A, Braeuning A, Lipka DB, Kirilov M, Geffers R, et al. Dysregulated serum response factor triggers formation of hepatocellular carcinoma. Hepatology. 2015;61:979–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hampl V, Martin C, Aigner A, Hoebel S, Singer S, Frank N, et al. Depletion of the transcriptional coactivators megakaryoblastic leukaemia 1 and 2 abolishes hepatocellular carcinoma xenograft growth by inducing oncogene-induced senescence. EMBO Mol Med. 2013;5:1367–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hermanns C, Hampl V, Holzer K, Aigner A, Penkava J, Frank N, et al. The novel mkl target gene myoferlin modulates expansion and senescence of hepatocellular carcinoma. Oncogene. 2017;36:3464–76.

    CAS  PubMed  Google Scholar 

  11. Thompson AI, Conroy KP, Henderson NC. Hepatic stellate cells: central modulators of hepatic carcinogenesis. BMC Gastroenterol. 2015;15:63.

    PubMed  PubMed Central  Google Scholar 

  12. Londono MC, Abraldes JG, Altamirano J, Decaens T, Forns X. Clinical trial watch: reports from the aasld liver meeting(r), boston, november 2014. J Hepatol. 2015;62:1196–203.

    PubMed  Google Scholar 

  13. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, et al. Ltrpc7 is a mg.Atp-regulated divalent cation channel required for cell viability. Nature. 2001;411:590–5.

    CAS  PubMed  Google Scholar 

  14. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, et al. Regulation of vertebrate cellular mg2+ homeostasis by trpm7. Cell. 2003;114:191–200.

    CAS  PubMed  Google Scholar 

  15. Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG. Characterization of the protein kinase activity of trpm7/chak1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem. 2004;279:3708–16.

    CAS  PubMed  Google Scholar 

  16. Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, Wei FY, et al. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of trpm7/chak1. J Biol Chem. 2005;280:20793–803.

    CAS  PubMed  Google Scholar 

  17. Mittermeier L, Demirkhanyan L, Stadlbauer B, Breit A, Recordati C, Hilgendorff A, et al. Trpm7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc Natl Acad Sci USA 2019;116:4706–15.

    CAS  Google Scholar 

  18. Clark K, Middelbeek J, Lasonder E, Dulyaninova NG, Morrice NA, Ryazanov AG, et al. Trpm7 regulates myosin iia filament stability and protein localization by heavy chain phosphorylation. J Mol Biol. 2008;378:790–803.

    PubMed  PubMed Central  Google Scholar 

  19. Dorovkov MV, Kostyukova AS, Ryazanov AG. Phosphorylation of annexin a1 by trpm7 kinase: a switch regulating the induction of an alpha-helix. Biochemistry. 2011;50:2187–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Perraud AL, Zhao X, Ryazanov AG, Schmitz C. The channel-kinase trpm7 regulates phosphorylation of the translational factor eef2 via eef2-k. Cell Signal. 2011;23:586–93.

    CAS  PubMed  Google Scholar 

  21. Deason-Towne F, Perraud AL, Schmitz C. Identification of ser/thr phosphorylation sites in the c2-domain of phospholipase c gamma2 (plcgamma2) using trpm7-kinase. Cell Signal. 2012;24:2070–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Romagnani A, Vettore V, Rezzonico-Jost T, Hampe S, Rottoli E, Nadolni W, et al. Trpm7 kinase activity is essential for t cell colonization and alloreactivity in the gut. Nat Commun. 2017;8:1917.

    PubMed  PubMed Central  Google Scholar 

  23. Jin J, Wu LJ, Jun J, Cheng X, Xu H, Andrews NC, et al. The channel kinase, trpm7, is required for early embryonic development. Proc Natl Acad Sci USA. 2012;109:E225–233.

    CAS  PubMed  Google Scholar 

  24. Yee NS. Role of trpm7 in cancer: Potential as molecular biomarker and therapeutic target. Pharmaceuticals. 2017;10:E39. pii

    PubMed  Google Scholar 

  25. Prevarskaya N, Skryma R, Shuba Y. Ion channels and the hallmarks of cancer. Trends Mol Med. 2010;16:107–21.

    CAS  PubMed  Google Scholar 

  26. Kim BJ, Park EJ, Lee JH, Jeon JH, Kim SJ, So I. Suppression of transient receptor potential melastatin 7 channel induces cell death in gastric cancer. Cancer Sci. 2008;99:2502–9.

    CAS  PubMed  Google Scholar 

  27. Huang J, Furuya H, Faouzi M, Zhang Z, Monteilh-Zoller M, Kawabata KG, et al. Inhibition of trpm7 suppresses cell proliferation of colon adenocarcinoma in vitro and induces hypomagnesemia in vivo without affecting azoxymethane-induced early colon cancer in mice. Cell Commun Signal. 2017;15:30.

    PubMed  PubMed Central  Google Scholar 

  28. Yee NS, Chan AS, Yee JD, Yee RK. Trpm7 and trpm8 ion channels in pancreatic adenocarcinoma: Potential roles as cancer biomarkers and targets. Scientifica. 2012;2012:415158.

    PubMed  PubMed Central  Google Scholar 

  29. Chen WL, Barszczyk A, Turlova E, Deurloo M, Liu B, Yang BB, et al. Inhibition of trpm7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget. 2015;6:16321–40.

    PubMed  PubMed Central  Google Scholar 

  30. Rybarczyk P, Vanlaeys A, Brassart B, Dhennin-Duthille I, Chatelain D, Sevestre H, et al. The transient receptor potential melastatin 7 channel regulates pancreatic cancer cell invasion through the hsp90alpha/upa/mmp2 pathway. Neoplasia. 2017;19:288–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chubanov V, Mederos y Schnitzler M, Meissner M, Schafer S, Abstiens K, Hofmann T, et al. Natural and synthetic modulators of sk (k(ca)2) potassium channels inhibit magnesium-dependent activity of the kinase-coupled cation channel trpm7. Br J Pharmacol. 2012;166:1357–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Essletzbichler P, Konopka T, Santoro F, Chen D, Gapp BV, Kralovics R, et al. Megabase-scale deletion using crispr/cas9 to generate a fully haploid human cell line. Genome Res. 2014;24:2059–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Blomen VA, Majek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, et al. Gene essentiality and synthetic lethality in haploid human cells. Science. 2015;350:1092–6.

    CAS  PubMed  Google Scholar 

  34. Wang Z, Peng T, Wu H, He J, Li H. Hap1 helps to regulate actin-based transport of insulin-containing granules in pancreatic beta cells. Histochem Cell Biol. 2015;144:39–48.

    CAS  PubMed  Google Scholar 

  35. Chubanov V, Ferioli S, Wisnowsky A, Simmons DG, Leitzinger C, Einer C, et al. Epithelial magnesium transport by trpm6 is essential for prenatal development and adult survival. eLife. 2016;5:e20914. pii

    PubMed  PubMed Central  Google Scholar 

  36. Krishnamoorthy M, Wasim L, Buhari FHM, Zhao T, Mahtani T, Ho J, et al. The channel-kinase trpm7 regulates antigen gathering and internalization in b cells. Sci Signal. 2018;11:eaah6692. pii

    PubMed  Google Scholar 

  37. Kaitsuka T, Katagiri C, Beesetty P, Nakamura K, Hourani S, Tomizawa K, et al. Inactivation of trpm7 kinase activity does not impair its channel function in mice. Sci Rep. 2014;4:5718.

    PubMed  PubMed Central  Google Scholar 

  38. Tong J, Li L, Ballermann B, Wang Z. Phosphorylation and activation of rhoa by erk in response to epidermal growth factor stimulation. PLoS ONE. 2016;11:e0147103.

    PubMed  PubMed Central  Google Scholar 

  39. Rolli-Derkinderen M, Sauzeau V, Boyer L, Lemichez E, Baron C, Henrion D, et al. Phosphorylation of serine 188 protects rhoa from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ Res. 2005;96:1152–60.

    CAS  PubMed  Google Scholar 

  40. Bae JS, Noh SJ, Kim KM, Jang KY, Chung MJ, Kim DG, et al. Serum response factor induces epithelial to mesenchymal transition with resistance to sorafenib in hepatocellular carcinoma. Int J Oncol. 2014;44:129–36.

    CAS  PubMed  Google Scholar 

  41. Kwon CY, Kim KR, Choi HN, Chung MJ, Noh SJ, Kim DG, et al. The role of serum response factor in hepatocellular carcinoma: Implications for disease progression. Int J Oncol. 2010;37:837–44.

    CAS  PubMed  Google Scholar 

  42. Yee NS, Kazi AA, Yee RK. Cellular and developmental biology of trpm7 channel-kinase: Implicated roles in cancer. Cells. 2014;3:751–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fleig A, Chubanov V. Trpm7. Handb Exp Pharmacol. 2014;222:521–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chubanov V, Ferioli S, Gudermann T. Assessment of trpm7 functions by drug-like small molecules. Cell Calcium. 2017;67:166–73.

    CAS  PubMed  Google Scholar 

  45. Evelyn CR, Wade SM, Wang Q, Wu M, Iniguez-Lluhi JA, Merajver SD, et al. Ccg-1423: A small-molecule inhibitor of rhoa transcriptional signaling. Mol Cancer Ther. 2007;6:2249–60.

    CAS  PubMed  Google Scholar 

  46. Yu-Wai-Man C, Spencer-Dene B, Lee RMH, Hutchings K, Lisabeth EM, Treisman R, et al. Local delivery of novel mrtf/srf inhibitors prevents scar tissue formation in a preclinical model of fibrosis. Sci Rep. 2017;7:518.

    PubMed  PubMed Central  Google Scholar 

  47. Lundquist MR, Storaska AJ, Liu TC, Larsen SD, Evans T, Neubig RR, et al. Redox modification of nuclear actin by mical-2 regulates srf signaling. Cell. 2014;156:563–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hayashi K, Watanabe B, Nakagawa Y, Minami S, Morita T. Rpel proteins are the molecular targets for ccg-1423, an inhibitor of rho signaling. PLoS ONE. 2014;9:e89016.

    PubMed  PubMed Central  Google Scholar 

  49. Chubanov V, Schlingmann KP, Waring J, Heinzinger J, Kaske S, Waldegger S, et al. Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of trpm6. J Biol Chem. 2007;282:7656–67.

    CAS  PubMed  Google Scholar 

  50. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, et al. Trpm7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J. 2006;25:290–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Su LT, Liu W, Chen HC, Gonzalez-Pagan O, Habas R, Runnels LW. Trpm7 regulates polarized cell movements. Biochemical J. 2011;434:513–21.

    CAS  Google Scholar 

  52. Ellerbroek SM, Wennerberg K, Burridge K. Serine phosphorylation negatively regulates rhoa in vivo. J Biol Chem. 2003;278:19023–31.

    CAS  PubMed  Google Scholar 

  53. Krapivinsky G, Krapivinsky L, Manasian Y, Clapham DE. The trpm7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell. 2014;157:1061–72.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funded by grant MU 2737/2-2 and Research Training Group 2338 of the Deutsche Forschungsgemeinschaft. TG, VC, and SZ were supported by Transregional Collaborative Research Center 152. We thank Margarete Goppelt-Struebe for critical reading of the manuscript and Sarah Hampe and Philip Riemenschneider for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Muehlich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voringer, S., Schreyer, L., Nadolni, W. et al. Inhibition of TRPM7 blocks MRTF/SRF-dependent transcriptional and tumorigenic activity. Oncogene 39, 2328–2344 (2020). https://doi.org/10.1038/s41388-019-1140-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1140-8

This article is cited by

Search

Quick links